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ABSTRACT

Data-parallelism is a programming model that maps well to archi-
tectures with a high degree of concurrency. Algorithms written us-
ing data-parallel primitives can be easily ported to any architecture
for which an implementation of these primitives exists, making ef-
ficient use of the available parallelism on each. We have previously
published results demonstrating our ability to compile the same
data-parallel code for several visualization algorithms onto different
on-node parallel architectures (GPUs and multi-core CPUs) using
our extension of NVIDIA’s Thrust library. In this paper, we dis-
cuss our extension of Thrust to support concurrency in distributed
memory environments across multiple nodes. This enables the ap-
plication developer to write data-parallel algorithms while view-
ing the data as single, long vectors, essentially without needing to
explicitly take into consideration whether the values are actually
distributed across nodes. Our distributed wrapper for Thrust han-
dles the communication in the backend using MPI, while still using
the standard Thrust library to take advantage of available on-node
parallelism. We describe the details of our distributed implemen-
tations of several key data-parallel primitives, including scan, scat-
ter/gather, sort, reduce, and upper/lower bound. We also present
two higher-level distributed algorithms developed using these prim-
itives: isosurface and KD-tree construction. Finally, we provide
timing results demonstrating the ability of these algorithms to take
advantage of available parallelism on nodes and across multiple
nodes, and discuss scaling limitations for communication-intensive
algorithms such as KD-tree construction.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming

1 INTRODUCTION

Gains in the number of operations per second achievable with new
hardware architectures have been increasingly driven by higher de-
grees of concurrency rather than by increasing clock speeds. Nev-
ertheless, the heterogeneity of available architectures generally re-
quires a significant amount of platform-specific optimization of
code, taking into account such specifics of the target architecture
as the structure of the cache hierarchy, the number and organiza-
tion of available threads and thread groups, the vector width, etc.,
in order to take advantage of the available parallelism and approach
the theoretical potential. When an architecture supports a cross-
platform language, such as OpenCL, it may be possible to simply
run existing code on a new architecture, but the code must still be
tuned and often re-designed in order run efficiently.
Data-parallelism is a programming model that maps well to ar-
chitectures with a high degree of concurrency. Using only a limited
set of “embarrassingly parallel” data-parallel primitive operators,
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such as scan, transform, and reduce, a wide variety of higher-level
algorithms can be constructed. These algorithms will then run effi-
ciently on any architecture for which an efficient implementation of
the data-parallel primitives exists, without needing to optimize the
higher-level algorithm for the target platform.

In [1], we introduced PISTON, our framework for developing
data-parallel visualization and analysis operators. PISTON is built
on top of NVIDIA’s Thrust library. Thrust is a C++ template library
that provides CUDA, OpenMP, and TBB implementations for a set
of simple algorithms, most of which are data-parallel primitives [2].
These algorithms operate on host and device vectors (where the de-
vice may be an accelerator such as a GPU or an Intel Xeon Phi),
and data can be transferred between the two data types. We im-
plemented an isosurface algorithm using these data-parallel prim-
itives, based on the standard Marching Cubes algorithm [3], and
designed to minimize data movement by creating a reverse map-
ping from output vertex index to input cell index. Cut surface and
threshold operators using the same algorithmic pattern were also
presented. We showed that our data-parallel implementations of
these algorithms allowed us to compile the exact same operator
code for different multi and many-core architectures (GPUs using
Thrust’s CUDA backend and our prototype OpenCL backend, and
multi-core CPUs using our enhancement of Thrust’s OpenMP back-
end). The performance cost for this portablilty was shown to be
fairly small relative to reference platform-native implementations
for these algorithms.

While our previous work focused on taking advantage of on-
node parallelism in shared memory environments, in this paper we
extend our data-parallel framework to also work across nodes in
a distributed memory environment. Many key data-parallel primi-
tives have been implemented in a new wrapper backend, which uses
MPI to communicate between nodes. Within the wrapper backend,
the existing CUDA, OpenMP, or TBB backend implementations
are called for on-node work in order to also still take advantage
of all cores available on each node. Higher-level algorithms can
then be written in the same manner as the data-parallel algorithms
we presented in our previous work for a single node. The data can
be treated as a single vector (even though it is actually distributed
across nodes), with the inter-node communication handled “under
the hood” in the distributed backend. Thus, virtually identical oper-
ator code can be compiled and run efficiently on a single multi-core
CPU or many-core accelerator (such as a GPU), or a set of nodes
with multi-core CPUs or many-core accelerators.

In this paper, we first describe relevant related work. Then,
we describe the implementation details of a number of key data-
parallel primitives in our distributed backend. Higher-level algo-
rithms for isosurface and KD-tree construction are then presented,
each built using these distributed data-parallel primitives. In the
Results section, we compare the performance of the isosurface im-
plemented using the distributed data-parallel primitives to three al-
ternatives: manually dividing the input equally among the nodes,
each of which runs our on-node isosurface algorithm; using paral-
lel VTK; and performing the computation for the entire input on a
single node. We also demonstrate scaling and performance results
for the KD-tree construction algorithm. Finally, the implications of



this work and some opportunities for future work are summarized
in the Conclusion.

2 RELATED WORK

The theoretical foundation for our work in data parallelism is laid
out in [4]. Blelloch describes a scan vector model, consisting of a
set of data-parallel primitives very similar to those now available
in Thrust. He then outlines a variety of higher-level algorithms
constructed using this scan vector model in the fields of data struc-
tures, computational geometry, graphs, and numerical analysis. Our
KD-tree construction algorithm is based on the outline provided by
Blelloch. Nested data parallelism, as found in, for example, divide-
and-conquer algorithms such as quicksort and KD-tree construc-
tion, is flattened using segment descriptors. Blelloch’s data paral-
lel programming model efforts were implemented on the Thinking
Machine’s Connection Machine family of hardware (CM2, CM-
200 and CMS5) [5]. Johnsson led a team of computer scientists
and applied mathematicians to optimize algorithms and applica-
tions on this data parallel hardware architecture [6, 7]. Blelloch’s
NESL functional language, designed to support nested data paral-
lelism on wide vector machines, was ported to GPUs by [8]. Our
work significantly extends these efforts by providing a portable im-
plementation of data parallel constructs on modern multi-core and
accelerator-based architectures.

More generally, a number of people have made significant
progress in implementing algorithms, including many used in vi-
sualization and analysis, on high-concurrency distributed memory
and mixed shared-distributed memory architectures. For exam-
ple, [9] describes the implementation of a parallel volume renderer
within the Vislt library that has been run with large data sets (81923
voxels) on up to 256 GPUs. Similarly, [10, 11] extend the CUDA
parallel programming model to the PCI bus and network intercon-
nects, facilitating the use of multiple GPUs. They provide a set of
language extensions called CUDASA, which presents distributed
shared memory to the programmer as global arrays [12]. Others
have explored the advantages and disadvantages of mixed-mode
programming using both MPI and OpenMP, identifying situations
in which such a strategy is most efficient (such as when a pure MPI
program suffers from poor scaling due to load imbalance or too fine
a grain problem size) [13]. Libraries, such as Argonne National
Laboratory’s DIY [14], have been developed in order to provide
cleanly encapsulated implementations of common MPI function-
ality and communication patterns, allowing algorithm developers
to write code without having to directly deal with the complexi-
ties of distributed memory programming. In addition to Thrust,
other libraries, such as STAPL, have been developed to provide
an STL-like interface for parallel programming [15]. Data paral-
lelism has also been further explored in the context of extending
the VTK visualization library to take advantage of many and multi-
core architectures in the Dax [16] and EAVL [17] projects. The
OpenMPI [18] and related OpenRTE [19] projects have attempted
to improve the MPI runtime to work well on large, heterogeneous
systems, with ease of use, resiliency, scalability, and extensibility
as design objectives. MapReduce [20] is a popular programming
model for processing large data sets across distributed, heteroge-
nous clusters, although the class of problems that can be solved in
this model is relatively limited.

Our research makes several significant contributions to extend
this existing body of work. Embedding both the distributed and
shared memory data parallelism within a framework based on
Thrust allows the algorithm developer to program using C++ and an
STL-like vector library, which is likely to be more familiar, easier to
use, and simpler to integrate with other code than most alternatives.
In contrast to much of the related work which is focused on a sin-
gle architecture and/or language (e.g., CUDA on NVIDIA GPUs),
our framework is portable across different types of on-node paral-

lelism (GPUs, CPUs, MICs, etc.). By supporting nested parallelism
through the use of segmented vectors, it allows for a wide variety
of algorithms to be efficiently implemented. Finally, it allows the
programmer to write an algorithm in the same way regardless of
whether it is to be run serially, with any supported type of shared-
memory parallelism, with distributed-memory parallelism, or with
both distributed and shared-memory parallelism.

3 IMPLEMENTATION

Our distributed backend is currently implemented as a wrapper
around the standard single-node Thrust. Like Thrust, the code
is provided in header files (.h and .inl), is contained within a
namespace called dthrust, and provides an interface of func-
tions with similar or identical names and signatures as corre-
sponding Thrust functions. This makes it easy to still compile
and use Thrust for various on-node accelerators while using the
distributed wrapper. For example, a scan across multiple GPUs
could be called using dthrust::inclusive_scan instead of
thrust::inclusive_scan, and compiling with the CUDA
backend. The operator code is written as if there were a single
device vector, while in fact the elements of the vector are spread
across device vectors in each process. In this section, we describe
our implementations of several of the more important data-parallel
primitives, as well as several higher-level algorithms built using
these primitives.

3.1 Distributed Implementations of Data-Parallel Primi-
tives

3.1.1 Data Transfer Functions

In some cases, all of the data may fit in the host memory of the root
process, and the reason for distributing the data among multiple
ranks is to take advantage of multiple accelerators (such as GPUs)
which have their own memory spaces (which are likely smaller than
that of the host). For such cases, utility functions are provided to
easily transfer data from a host vector on the root to device vectors
in each process and vice-versa. This can also be helpful for debug-
ging code that will later be run with a larger input data set that is
itself distributed across processors. The device_to_host func-
tion uses an MPI_Gather to collect the vector sizes from each
process, performs an exclusive scan on the vector sizes to get the
displacements into the root host vector at which to begin writing
data from each process, transfers the local data from device to host,
and finally uses an MPI_Gatherv to send data from all processes
to the root host vector. The host_to_device function sets the
vector size for each process so as to divide the host vector evenly
(with any remainder on the last process), or to user-specified sizes
on each processor, then uses an MPI_Gather to collect the vector
sizes on each process, performs an exclusive scan to get the dis-
placements into the root host vector at which to begin reading the
data for each process, uses an MPI_Scatterv to send data from
the root host vector to each process, and finally transfers the local
data on each process to a device vector.

3.1.2 Rebalancing and Shifting

A rebalance function allows a vector to be re-balanced across the
processors, either uniformly, or so as to match the distribution of
another vector of equal global length. The first case provides better
load balancing, while the second case is useful in order to perform
another function (such as transform) on two or more vectors while
keeping all computation local. The current local vector sizes are
gathered to the root, which performs an exclusive scan to compute
the current global offset for each processor, which it scatters to the
respective processors. The new desired local sizes for each pro-
cessor (either computed to be uniform, or taken from the reference
vector on that processor) are broadcast to all processors, so that
all processors can perform an exclusive scan and get the new global



starting indices for each processor. A counting iterator starting with
the processor’s current global offset can then be searched in the vec-
tor of new global offsets using the regular Thrust upper_bound
function to get the new processor id to which each element will be-
long. Each processor then informs each other processor how many
elements it will send to it using an MPI_Scatter. Finally, in
order, each processor uses an MPI_Scatterv to send data be-
longing to each other processor, and each receiving processor ap-
pends the received data to its new local vector, while the sending
processor appends its local data to its new local vector, ensuring
that the elements in the result are in the correct order (data from
lower-numbered processors should come before data from higher-
numbered processors). In most cases, each processor will only need
to communicate with a small number of other processors with ranks
close to its own, but in the worst case, any processor may need to
send data to any other processor.

The implementation of the shift function also begins by gather-
ing the local vector sizes to the root, which performs an exclusive
scan to compute the total global size and the global offset for each
processor, which it scatters to the respective processors. (Alterna-
tively, this may be accomplished with an MPI_Exscan.) Given its
global offset, the global size, and the number of places to shift, each
processor can compute how many, if any, of its elements should be
dropped rather than copied to the local output vector. The first pro-
cessor (in the case of a right shift), or the last processor (in the case
of a left shift), append a number of zeros to its local output vector
equal to the number of shift places. As with some of the other op-
erators to be described later, this algorithm limits communication
(no elements are actually moved), at the expense of ensuring good
load balance. However, if desired, the result can then be fed to the
rebalance function described above, which will optimize the load
balance at the expense of some communication.

Functions for other utility functions such as creating counting
iterators and for returning the first (front) or last (back) element of
the global vector are also included.

3.1.3 Transform, Scan, Segmented Scan, Scatter, Gather,
and Reductions

Unary transforms can be performed locally on each processor so
long as user-defined functors either do not access any other vectors,
or are restricted to only access vectors with an equivalent distribu-
tion across processors (which can be ensured with the rebalance
function). Similarly, a binary transform can be performed trivially
on two vectors with an equivalent distribution.

Inclusive and exclusive scans for a given binary operator may
be performed by executing the scan on each local device, gathering
the local sums (where “local sum” means the final result of the local
scan, using the given binary operator, combined with the final lo-
cal input value in the case of an exclusive scan), performing a scan
on those, and then applying each value in this result as an offset
for the corresponding process. The scan on the processor sums can
be performed using the MPI_Exscan function, but we have found
that performing this scan by using the MPI_Gather function, exe-
cuting the scan on the root, and using MPI_Scatter to distribute
the computed offsets back to the processors is slightly faster and
easier to adapt to special cases, such as reverse iterator input (in
which case the scan needs to be performed in reverse). The dis-
tributed scan algorithm is illustrated in Figure 1, and code is given
in Listing 1.

For segmented scans (called scan_by_key in Thrust), the seg-
mented scan is also first executed locally on each device, and the
local sums, as well as the first and last segment id for each local
vector, are gathered on the root. However, since each processor
may contain more than one segment, and each segment may span
more than one processor, the processor offsets cannot be computed
by simply performing one scan on the processor sums. Instead,

for each processor, the previous processor sums are accumulated
so long as their last segment id is equal to its first segment id. In
the worst case, this could take O(p?) time, where p is the number
of processors. These offsets are then distributed to each processor
using an MPI_Scatter, and each processor applies the received
offset only to its elements with the same segment id as the last el-
ement of the previous processor, using Thrust’s transform_if
function.

A scatter operation is implemented by first broadcasting the
number of elements belonging to each processor and computing
an exclusive scan on this result to obtain the global index at which
each processor’s vector begins. A functor which takes this vector
of processor start indices as input is used with a transform opera-
tor to compute the processor destination and local index from each
global destination index. Each processor can then either perform a
scan_by_key to order the input data and local indices by destina-
tion processor and then use MPI_Scatterv to send all this data
to each other processor, or can avoid the sort and use copy_if to
stream compact the values to be sent to each other processor one
at a time using MPI_Send and MPI_Recv. Finally, Thrust’s lo-
cal scatter operator can be used to locally distribute the data to
their proper local indices. While this distributed scatter operator
can often be a useful tool in designing higher-level data-parallel al-
gorithms, it can incur significant communication overhead (in the
worst case, all elements are sent once to another processor), so it
should only be used when needed.

A gather operation (which is also performed by a permutation
iterator in Thrust) can be implemented in a similar manner. How-
ever, once the global map indices have been converted to processor
ids and local indices, two phases of communication are necessary:
the first for the requesting processors to send local indices to be
fetched from other processes, and the second for these processes
to return the requested data. Local data residing on the same pro-
cessor as the one where it was requested are copied to the output
using a gather_if (conditioned on the computed source process
rank being equal to the process’s own rank). Data requested from
the other processes is received back in the order of the source pro-
cessors’ ranks, so the final local destination indexes for the vector
of received data values must be computed by stream compacting a
counting iterator using a copy_if conditioned on the source pro-
cess not being equal to the process’s own rank and then perform-
ing a stable_sort_by_key (with the source process ids as the
keys). The vector of received data can then be scattered to these
local indices in the output.

Distributed reductions are implemented simply by performing
the reduction locally on each processor, gathering the results of
these local reductions to the root, and performing a final global re-
duction on these values. To match the syntax of Thrust, transform
scans are also provided, although those are currently implemented
simply as a transform followed by a scan without kernel fusion.

3.1.4 Upper and Lower Bound

A restricted version of the Thrust search operator upper_bound
has also been implemented in the distributed wrapper. As with the
regular Thrust upper_bound, the input search vector must be an
ordered sequence, but in this case, the vector of values for which to
search must be a counting iterator, and each element of the ordered
sequence must be either equal to or one greater than the previous
element. This restricted operator is useful for many applications,
as shown, for example, in the distributed isosurface algorithm de-
scribed below. Each processor can use the regular upper_bound
operator to determine the local indices for all counting iterator val-
ues between the minimum and maximum values of the portion of
the ordered sequence vector on that processor. Each processor (ex-
cept the last) also communicates the last value in its portion of the
ordered sequence to the next processor. If this value is not the same



template <typename InputIterator, typename OutputIterator, typename T, typename BinaryOperation>

OutputIterator scan(Inputlterator first, InputIterator last, OutputlIterator result,

// Get the MPI rank, total number of processes,
int commSize; MPI_CHECK (MPI_Comm_size (MPI_COMM_WORLD, &commSize));
MPI_Datatype dataType; int dataTypeFactor;

// Perform the inclusive or exclusive scan locally on this processor
if (inclusiveScan) thrust:: (first, last, result, binop);
else if (commRank == 0) thrust::
else thrust:: (first, last, result, 0, binop);

(first, last, result, init, binop);

T init, bool inclusiveScan, BinaryOperation binop, bool reverse)

MPI data type, and local vector size
int commRank;
dthrust::get_mpi_type<T>(typeid(T), dataType, dataTypeFactor); int N = last - first;

MPI_CHECK (MPI_Comm_rank (MPI_COMM_WORLD, &commRank));

// Get the local sum (the last element of the scan, combined with the last element of the input in the case of an exclusive scan)

T localSum = init; if (N > 0) localSum = *(result+N-1);
if ((!inclusiveScan) && (N > 0)) localSum = binop(localSum, *(last-1));

// Gather local sums to the root, perform a scan on those, and scatter these offsets

thrust::host_vector<T> localSums;

if (commRank == 0) { localSums.resize(commSize+1); thrust::fill (localSums.begin(), localSums.end(), init); }
MPI_CHECK (MPI_Gather (¢localSum, 1, dataType, thrust:: (&% (localSums.begin() + (reverse ? 0 : 1))), 1, dataType, 0, MPI_COMM_WORLD));
if (commRank == 0)

if (reverse) thrust:: (localSums.rbegin(), localSums.rend(), localSums.rbegin(), binop);

else thrust:: (localSums.begin(), localSums.end(), localSums.begin(), binop);
MPI_CHECK (MPI_Scatter (thrust:: (&% (LocalSums.begin() + (reverse 2 1 : 0))), 1, dataType, &localSum, 1, dataType, 0, MPI_COMM_WORLD));
// RApply the received offset to each element on this processor
thrust:: (result, result+N, thrust::make_constant_iterator (localSum), result, binop);

return (result+N);

Listing 1: Code for distributed scan operator
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Figure 1: Diagram of the distributed scan algorithm (showing here
an inclusive scan)

as the first value owned by the receiving process, the receiving pro-
cess adds an extra value at the beginning of its portion of the output
vector with a local index of zero. Using an MPI_Exscan on the
local ordered sequence vector size, it can compute the beginning
global index of the ordered sequence on each processor, and use the
transform operator to add this global offset to the computed local
indices. If the last value in the ordered sequence on the last proces-
sor is less than the maximum value of the counting iterator, the last
index of the ordered sequence is appended to the output vector for
each counting iterator value in excess of the final ordered sequence
value.

This algorithm results in a very limited amount of inter-node
communication, with each processor sending only a single value
to one other process. However, it can result in an output vector that
is not evenly balanced across the processors. If desired, the output
vector can be passed to the rebalance utility function to improve
load balancing. An implementation of lower_bound should be
symmetrical to this algorithm, but has not yet been implemented.

3.1.5 Sort and Sort by Key

Our distributed wrapper implements the sort operator using a
distributed sample sort [21] [22]. The data is first sorted locally
on each processor using the regular Thrust sort operator. Then,
equally-spaced samples are selected from the sorted data on each
processor and gathered onto the root where they are sorted. Equally
spaced splitter values are then selected from the sorted samples

and broadcast to each processor. Each processor can then compute
the ranges in its local sorted data to send to each other processor,
either by calling count_if for each processor id and then per-
forming an exclusive scan, or by using upper_bound. All data
that needs to be sent to other processors is then distributed using
MPI_Scatterv. The data received from the other processes is
sorted and then merged with the local data remaining on the pro-
cessor using the regular Thrust sort and merge functions. Aside
from the communication to determine the splitter values, the data
movement is the minimum required to get each element to its proper
processor, and the load balancing is good.

Sort by key (in which the elements in a vector of values are re-
arranged along with their correponding keys as the keys are sorted)
is implemented using the same algorithm. Thrust’s sort_by_key
is used instead of sort for the local sorts, and the associated val-
ues must be sent between processors along with the keys that are
moved. The received keys and values as well as the local keys and
values are copied to the corresponding key and value output vectors
and sorted together using sort _by_key.

3.2 Algorithms Built Using the Distributed Primitives

Higher-level data-parallel algorithms, such as those commonly used
in visualization and analysis, can then be constructed using the dis-
tributed primitives described in the previous section. In this sec-
tion, we describe two such algorithms: isosurfacing, based on the
algorithm we previously published using Thrust on a single multi-
or many-core node, and constructing a KD-tree. The key advan-
tage of this strategy from the point of view of the algorithm de-
veloper is that he/she can design the algorithm in the same way
as he/she would for a single node or even single core essentially
without needing to explicitly consider the fact that it will run on
multiple cores and on multiple nodes, and yet the resulting opera-
tor will take advantage of the available parallelism and be portable
across any architectures supported by the backends.

In the case of the isosurface, it is also possible to get a speedup
across multiple nodes in a fairly straightforward manner without us-
ing distributed data-parallel primitives by running the single node
implementation on each node, each operating on a subset of the in-
put with ghost cells replicated as necessary (although the speedup
may not be ideal due to poor load balancing of the number of output
vertices). However, while distributed algorithms often exist, many
other operators, such as constructing a single global KD-tree across
multiple nodes, require explicit consideration of the distributed en-
vironment and cannot be implemented as a straightforward exten-
sion of a single-node shared-memory algorithm without using dis-
tributed data-parallel primitives.



// Initialize a counting iterator, and allocate memory for vectors
thrust::counting_iterator<int> countingIterator; dthrust::

(0, input.NCells, countingIterator);

dthrust: : (input.NCells, case_indices); dthrust:: (input.NCells, num_vertices); dthrust:: (input.NCells, valid_cell_enum);
// Classify all cells to get Marching Cubes case index and number of vertices to generate
thrust:: (countinglterator, countinglterator+case_indices.size(), thrust:: (thrust:: (
case_indices.begin(), num_vertices.begin())), classify_cell (input, isovalue, numVertsTable.begin()));
// Enumerate the valid cells, and then find the indices of the valid cells
dthrust:: (num_vertices.begin(), num_vertices.end(), valid_cell_enum.begin(), is_valid_cell(), thrust:: <int>());
dthrust: : (valid_cell_enum.begin(), valid_cell_enum.end(), num_valid_cells-1, valid_cell_indices);
// Use valid cell indices to fetch case index and number of vertices for each valid cell
dthrust:: (num_vertices.begin(), num_vertices.end(), valid_cell_indices.begin(), valid_cell_indices.end(), output_vertices_compact);
dthrust: : (case_indices.begin(), case_indices.end(), valid_cell_indices.begin(), valid_cell_indices.end(), case_indices_compact);
// Do an enumeration to get output indices for first vertex generated by valid cells
output_vertices_enum. (output_vertices_compact.size());
dthrust:: (output_vertices_compact.begin(), output_vertices_compact.end(), output_vertices_enum.begin(), 0, thrust:: <int>());
// Get global and local number of vertices, and allocate space for vertex arrays
num_total_vertices = dthrust::back (output_vertices_compact) + dthrust::back (output_vertices_enum);
int num_local_vertices = 0;
if ((output_vertices_compact.size() > 0) && (output_vertices_enum.size() > 0))
num_local_vertices = output_vertices_compact.back() + (output_vertices_enum.back() - output_vertices_enum.front ());
vertices. (num_local_vertices); normals. (num_local_vertices); scalars. (num_local_vertices);

// Do edge interpolation for each valid cell
if (num_local_vertices > 0)

thrust:: (thrust:: (thrust:: (valid_cell_indices.begin(), output_vertices_enum.begin (),
case_indices_compact.begin(), output_vertices_compact.begin())), thrust:: (thrust:: (valid_cell_indices.end(),
output_vertices_enum.end(), case_indices_compact.end(), output_vertices_compact.end())), isosurface_functor (input, source, isovalue,
output_vertices_enum[0], triTable.begin(), thrust::raw_pointer_cast (&*vertices.begin()), thrust::raw_pointer_cast (&xnormals.begin()),

thrust::raw_pointer_cast (&¢*scalars.begin())));

Listing 2: Code for distributed isosurface algorithm

3.2.1 Isosurface

Our distributed isosurface algorithm is almost identical to our pre-
viously published single-node algorithm [1]. The general principle
is that it generates a “reverse mapping” from output vertex index
to input cell index (rather than from input cell index to output ver-
tex index), allowing it to “lazily” apply operations only to cells that
will generate the output vertices. Code for the distributed algorithm
is given in Listing 2. Implementations of the functors (such as
classify_cell and isosurface_functor) are not listed,
but are exactly the same as those used in the single-node algorithm,
except for a small modification when used with a data set from a
file (rather than procedurally generated data), as described later in
this section.

Using the transform primitive, with the classify.cell
functor that computes the Marching Cubes case number in-
dex for a cell based on its pattern of vertices above
and below the isovalue, a vector of case number indices
(case_indices) and a vector of the number of output ver-
tices generated by each cell (num_vertices) are generated.
A transform_inclusive_scan with the is.valid.-cell
functor that returns one for any value greater than zero is then
performed on the number of vertices to enumerate the valid cells
(valid_cell_enum). The last element of this vector indicates the
total number of valid cells. A search (upper_-bound_counting)
is then performed on a counting iterator that enumerates the
valid cells, searching in the valid_cell_enum vector to
find the index of the first element greater than each count-
ing iterator element. The result of this search is stored in
valid_cell_indices. This compact vector of global indices
of the valid cells is used to fetch the number of output vertices
for each valid cell using gather, and an exclusive_scan
on this result (output_vertices_compact) gives the start-
ing offset into the global output vertex array for each valid cell
(output_vertices_enum). In the original single-node al-
gorithm, the gather was combined with the exclusive scan us-
ing Thrust’s permutation iterator, but we have not yet imple-
mented distributed permutation iterators. The total number of
vertices in the output is the sum of the last elements of the
output_vertices_compact and output_vertices_enum
vectors (the starting offset of the final valid cell plus the num-
ber of vertices produced by the final valid cell). One small addi-
tional step required in the distributed version of the algorithm is
to compute the number of local vertices in the same way as the
number of global vertices, except using only the local versions

of those two vectors, in order to correctly resize the local sec-
tions of the vertex, normal, and scalar vectors. Finally, the ver-
tices, normals, and scalars are generated using for_each with the
isosurface_functor functor. Since no communication be-
tween vector elements is needed in this step, the standard single-
node for_each may be called by each processor (as was also the
case with the t ransform in the first step).

Due to the implementation of upper_bound_counting, as
described above, the gather step requires virtually no communi-
cation, but is likely to result in a valid_cell_indices vector
that is not well balanced across nodes. The vector may be evenly
redistributed using the rebalance function, at the cost of inter-
node communication. In practice, the number of cells that actually
generate geometry is usually quite small compared to the original
number of input cells, so an unbalanced workload in the final steps
that compute the vertices for each valid cell may not significantly
impact the overall performance, which may be dominated by the
initial, well load-balanced steps that examine all input cells to de-
termine which will generate geometry.

When data from a file (such as the ocean temperature data set
shown in Figure 8) is used rather than procedurally generated data
(such as the “tangle” field described in the Results section), the ap-
propriate range of data must be used to instantiate the local PISTON
image data structure on each processor. For VTK image files used
as input to the isosurface operator, in which the layout of the 3D
data into a 1D array is such that the x coordinates increase fastest
and the z slowest, each processor should include a range with x*y
ghost cells preceding and following its portion of the input data
(where x and y are the x and y dimensions of the input), except
at the global beginning and end. Also, the classify_cell and
isosurface_functor functors need to subtract the global in-
dex of the first element of the local input data from the computed
global index before accessing the local input data. If desired, the
vertices generated by this algorithm could potentially be welded
into a triangle strip as described in a Thrust example [23].

3.2.2 KD-Tree

As shown in Figure 2, the goal of the KD-tree algorithm is to con-
struct a binary tree such that, at each level, the input points be-
longing to the parent node are evenly distributed to the child nodes
based on one of their coordinate values. Sample 2D input points
are illustrated in Figure 2A, and the high-level algorithm steps are
shown for the first two levels in Figure 2B. First, an initialization
step is performed, in which the global rank of each input point is de-
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Figure 2: KD-tree algorithm: A) Sample 2D input points, showing two successive levels of splitting (first in x, then in y) B) Overview of the steps
in computing the KD-tree for the first two levels C) Details of the segmented split algorithm D) Details of the renumber ranks algorithm

termined for each coordinate dimension. This is accomplished for
each dimension by applying the distributed sort_by_key opera-
tor, where the values are the point ids and the keys the coordinates,
and then by scattering a counting iterator according to the sorted
values.

At each level, the tree is represented by a segmented vector,
where each segment corresponds to a node, and the elements within
that segment are the points belonging to the subtree rooted at that
node. Thus, there are 2! segments for the vector at level [. At each
successive level, points in one segment are partitioned into two new
smaller segments. Since segments represent subtrees, points in a
lower level are never in a position outside the range of their parent
segment, so global communication is greatest when computing the
top levels of the tree and least for lower levels.

At each level, the algorithm then consists of three steps: com-
pute flags (true/false) to mark which points will belong to the left
child and which to the right child; split the points to the left and
right subtree positions; and convert the points’ relative ranks in the
parent node in each coordinate dimension to their relative ranks
in the child node. In the version of the algorithm we have im-
plemented, the coordinate dimension used for splitting alternates
at each successive tree level. The rank renumbering step ensures
that, for each segment of length m, we have the ranks O through
m — 1 of the points in that segment. Thus, the median point, to
be used for the split, is simply the point with rank m/2 (with the
median itself included in the right subtree for an even number of
points). The flags can therefore be generated by first applying a re-

verse inclusive_scan_by_key with the maximum operator to
a counting iterator to obtain a vector specifying for each element the
total number of elements in its segment. A transform can then
be applied to set the flag for each element depending on whether
its rank is less than or greater than or equal to the median rank of
its segment (half the total number of elements in the segment). The
segmented split step, as illustrated in Figure 2C, computes the new
global index for each element, and then uses scatter to move
each point to its new position in the next tree level. For points with
a false flag, the new global index is computed as the total number
of elements in previous segments plus the number of falses preced-
ing it in its segment. For points with a true flag, the new global
index is computed as the total number of elements in previous seg-
ments plus the total number of falses in its segment plus the number
of trues preceding it in its segment. The rank renumbering step is
somewhat more involved, making use of several scans and scatters,
as well as the segmented split function, and is best illustrated with
an example as in Figure 2D.

The KD-tree construction algorithm makes extensive use of a
number of the distributed primitives, including the segmented ver-
sions of sort and scan. The 3D case, as implemented in our
code, is a straightforward extension of the 2D example presented
here, with just one more vector for z-coordinate ranks. In most
cases, it is likely to incur a fair amount of global communication
overhead, particularly in the top levels of the tree. Some of this
may be able to be reduced with further refinements of the algorithm.
For example, in theory, values should not need to moved outside of



their original segment during the rank renumbering step, since all
the necessary information is local to the segment. Nevertheless, this
algorithm is a good example of how a type of problem with nested
data parallelism can be successfully implemented in this paradigm.

4 RESULTS

Two systems were used for running our performance tests. Up to
128 nodes on the Moonlight supercomputer were used, each having
a 16-core 2.6 GHz Intel Xeon E5-2670 CPU, 64 GB of RAM, and
an NVIDIA Tesla M2090 GPU. OpenMPI 1.6.3, GCC 4.4.6, and
CUDA 5.0 were used. Up to eight nodes on one partition of the Dar-
win cluster were also used, each having a 48-core 1.9 GHz AMD
Opteron 6168 CPU, 128 GB of RAM, and an NVIDIA Quadro 5000
GPU. OpenMPI 1.6.4, GCC 4.4.7, and CUDA 5.0 were used.

Three versions of the isosurface algorithm were compared. The
first simply uses our original PISTON isosurface algorithm on a
single node. The second is manually configured using MPI to run
our original algorithm independently on multiple nodes, with input
explicitly divided among the nodes. The third uses our distributed
isosurface algorithm, with the input treated as one large vector and
the details of the communication hidden in the implementations of
the data-parallel primitives. The input was the implicitly-defined
“tangle” data set (similar to that used in NVIDIA’s Marching Cubes
CUDA demo), with equation (x* — 5x% +y* — 5y% +z* — 522 +
11.8) %0.2+0.5). The reported times are the average for the com-
putation only over ten isosurfaces, with the output being vectors
(distributed across the nodes) of the vertex positions, normals, and
scalar values. They do not include gathering the results back to a
root node or rendering images.

Figure 3 and Figure 4 show the performance of these three ver-
sions with different input sizes, each run on four nodes using, re-
spectively, the CPU with the Thrust OpenMP backend and the GPU
with the Thrust CUDA backend. On the GPU, the distributed algo-
rithm is slower than the manual multi-node version for small data
sizes, presumably due largely to the communication overhead (in-
cluding transfering data between GPU and CPU to be sent to an-
other processor). However, since the amount of communication in
this algorithm is on the order of the number of processors rather
than the data size, the distributed algorithm converges towards the
manual multi-node algorithm for larger data sizes, where both run
on four nodes about 3.5 times faster than the single node version.

3D Isosurface Generation: Compute Rates on CPU
(Using all 16 available processors per node)

Single node PISTON
—— Parallel VTK on four nodes
—2— Input distribution across four nodes with PISTON
_|—+— Distributed PISTON on four nodes
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Figure 3: 3D Isosurface Generation: OpenMP Compute Rates on
four Intel Xeon E5-2670 nodes on Moonlight supercomputer

As shown in Figure 5, the distributed version run on the CPU
makes good use of available on-node parallelism, scaling well with

3D Isosurface Generation: Compute Rates with CUDA

Single node PISTON
|2 Input distribution across four nodes with PISTON
—+ Distributed PISTON on four nodes 0.121

0.2000

00378
00317

Seconds per Isosurface (log scale)
0.0200 0.0500

0.0020 0.0050

0.0005
I

64 128 256 512

Grid size cubed (log scale)

Figure 4: 3D Isosurface Generation: CUDA Compute Rates on four
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer

the OpenMP thread count, just as the original single-node version
does. Figure 6 shows the scaling with the number of nodes used.
Both the distributed version and the manual multi-node version
scale well, with just a small roughly constant overhead for the dis-
tributed version. The scaling likely benefits from the fact that the in-
put “tangle” field has symmetry properties that result in a relatively
good load balance. With different input sets, the load balancing
for the final steps that compute the output vertices may be better
or worse. However, as long as the percentage of cells generating
output is relatively small, the overall time will likely be dominated
by the well load-balanced initial steps. In some cases, better perfor-
mance may perhaps be obtained by calling the rebalance oper-
atoron valid_cell_indices before executing the final steps.

3D Isosurface Generation: Strong Scaling with on-node CPU Parallelism
(1024x1024x1024 grid)

Single node PISTON (OpenMP threads)
—o— Parallel VTK on four nodes (MPI ranks)
—2— Input distribution across four nodes with PISTON (OpenMP threads)
—+— Distributed PISTON on four nodes (OpenMP threads)

Seconds per Isosurface (log scale)
1

Number of OpenMP threads or MPI ranks per node (log scale)

Figure 5: 3D Isosurface Generation: Scaling with on-node CPU par-
allelism on four Intel Xeon E5-2670 nodes on Moonlight supercom-
puter

Figures 3, 5, and 6 also compare performance against parallel
VTK (based on the Parallellso example included with VTK, tim-
ing only the computation and not rendering). VTK does not use
OpenMP or other on-node acceleration constructs, so on-node par-
allelism for multi-core CPUs is achieved by spawning multiple MPI
ranks per node. The scaling performance of parallel VTK is very



3D Isosurface Generation: Strong Scaling with Number of Nodes
(1024x1024x1024 grid, with all 16 available processors per node)
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Figure 6: 3D Isosurface Generation: Scaling with the number of Intel
Xeon E5-2670 nodes on Moonlight supercomputer

similar to that of distributed PISTON. However, programming VTK
to run in parallel requires explicit consideration of the distributed
environment, and thus is more complicated than programming se-
rial VTK.

Figure 7 shows that the distributed algorithm compiled using
CUDA also scales with the number of GPUs (using one GPU per
node), although the parallel efficiency falls off with larger numbers
of nodes. This is likely due at least in part to the fact that, with
large numbers of GPUs, there is relatively little computational load
per GPU. With GPUs, there is also a cost for transfering the data
between the GPU and the CPU in order to send it to other nodes,
providing less opportunity for gains in computational efficiency to
mask the communication overhead. The timings in this figure are
with a data size of only 5123, since larger data sizes will not fit
in the memory of the GPUs when distributed among only a few
GPUs. However, with a data size of 10243, we have observed the
distributed algorithm running 1.4 times faster with 64 GPUs than
32 GPUs.

3D Isosurface Generation: Strong Scaling with Number of GPUs
(512x512x512 grid, CUDA)
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Figure 7: 3D Isosurface Generation: Scaling with the number of
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer

However, performance scaling is not the only reason to want
to perform a computation distributed across multiple GPUs. In

our original PISTON paper, we were not able to compute isosur-
faces for a full-resolution 3600x2400x42 ocean temperature data
set (from [24]) on a single Quadro 6000 GPU due to memory con-
straints, so we had to downsample it to an 1800x1200x42 data set.
Using distributed PISTON, we are now able to compute isosurfaces
on the full-resolution data set across four Quadro 5000 GPUs. An
example result rendered from this distributed computation is shown
in Figure 8.

Figure 8: Isosurface at 10°C computed across four NVIDIA Quadro
5000 GPUs on our Darwin cluster on a 3600x2400x42 ocean temper-
ature data set, showing the level of detail available at this resolution
with progressive magnifications along the west coast of North Amer-
ica.

Figure 9 and Figure 10 show the scaling of the distributed KD-
tree construction algorithm with the available on-node and inter-
node parallelism, respectively. For these tests, the input was a set
of 230 randomly generated 3D points. It is able to make good use of
up to 16 OpenMP threads on the tested AMD Opteron 6168. The
performance also increases with the number of nodes (up to eight,
the maximum tested). However, the parallel efficiency decreases
significantly as the number of nodes increases. At each successive
level of the KD-tree, the number of segments (tree nodes) is dou-
bled, and points are rearranged within their parent segment (i.e.,
points belonging to the parent node are partitioned into its left and
right subtrees). In the first tree level, the points (initially in random
order) are partitioned into two subtrees. If there are two processors,
on average, half of the points will be moved to the other processor
at this level. However, in subsequent levels, the points will only
move around within their own processors. If there are four proces-
sors, then points will again be moved in the second tree level, but
will then all be on their correct final processor. In general, if there
are p processors, points may move to a different processor only
within the first logy(p) tree levels. In our experiments, we have
confirmed that the time for the first log,(p) levels increases as p
increases (with a large percentage of the time spent in MPI calls),
but that the time for each of the remaining logs(n) — log2(p) lev-
els scales fairly well (with only a tiny fraction spent in MPI calls).
Thus, as the number of processors is increased, there is a trade-off
between the increased time necessary to move the points to their
correct processors in the first logs (p) levels (plus computing initial
global ranks), and the computational savings at subsequent levels.
With small data sizes (i.e., a small amount of local work per node),
the threshold number of nodes at which scaling stops is smaller than
with larger data sizes. Thus, due to the limited amount of memory
available on GPUs, we cannot currently scale the KD-tree algorithm
well on multiple GPUs.

Overall, the results indicate that algorithms with limited global
communication, such as isosurface computation, can be imple-
mented efficiently in the distributed data-parallel programming
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